

Количество участников ОГЭ по химии по категориям

Таблица 2-1

Участники ОГЭ	201	8 г.	201	19 г.	202	2 г.
	чел.	%	чел.	%	чел.	%
Выпускники текущего года,	1539	99,9	1683	100	1390	100
обучающиеся по программам ООО						
Выпускники лицеев и гимназий	193	12,5	212	12,6	227	16,3
Выпускники СОШ	1344	87,3	1466	87,1	1156	83,2
Обучающиеся на дому	2	0,1	2	0,1	10	0,7
Участники с ограниченными	8	0,5	11	0,7	6	0,4
возможностями здоровья						

1060 выпускников городских и 330 выпускников сельских образовательных учреждений

Результаты ОГЭ в 2022 году в Тюменской области.

	Учебны			Отме	тка «2»	Отмет	гка «З»	Отм «4			етка 5»
№ п/п	й предмет	Всего участников	Участников с ОВЗ	чел.	%	чел.	%	чел.	%	чел.	%
1.	Химия	1390	6	34	2,4	468	33,7	489	35,2	399	28,7

Анализ выполнения заданий КИМ ОГЭ в 2022 г.

Номер задания в КИМ	Проверяемые элементы содержания / умения	Уровень сложности задания	Средний процент выполнения		оцент вы у в групп отм		
D ICIIII	yze	Задания	DEFINITION	«2»	«3»	«4»	«5»
1	Атомы и молекулы. Химический элемент. Простые и сложные вещества.	Б	59,1	26,5	48,9	56,9	76,7
2	Строение атома. Строение электронных оболочек атомов первых 20 химических элементов Периодической системы Д.И. Менделеева. Группы и периоды Периодической системы. Физический смысл порядкового номера химического элемента.	Б	81,1	38,2	70,3	84	93,7
3	Закономерности изменения свойств элементов в связи с положением в Периодической системе Д.И. Менделеева.	Б	76,1	32,4	68,2	77,7	87,2

Анализ выполнения заданий КИМ ОГЭ в 2022 г.

Номер задания в КИМ	Проверяемые элементы содержания / умения	Уровень сложности задания	Средний процент выполнения		оцент вы у в групп отм		
БКИМ	умения	задания	выполнения	«2»	«3»	«4»	«5»
4	Валентность. Степень окисления химических элементов.	П	71,9	32,4	57,5	75,4	88,1
5	Строение вещества. Химическая связь: ковалентная (полярная и неполярная), ионная, металлическая.	Б	74,4	23,5	63,5	78,9	86
6	Строение электронных оболочек атомов первых 20 химических элементов Периодической системы Д.И. Менделеева. Закономерности изменения свойств элементов в связи с положением в Периодической системе Д.И. Менделеева.	Б	69,7	29,4	56	70,8	88

Важно!

В структуре экзаменационного КИМа 2023 года, а также формулировке и критериям оценивания изменения в сравнении с предыдущим периодом отсутствуют! Это значит, что подготовка может осуществляться как по материалам 2023 года, так и по разработкам 2022 года.

Останутся без изменения:

- длительного экзамена 180 мин. (ровно 3 часа);
- количество частей в КИМе 2 части;
- суммарное количество вопросов 24 шт;
- задания № 23 и 24 предполагают проведение реального эксперимента;
- на экзамене можно использовать непрограммируемый калькулятор;
- каждому участнику организаторы предоставляют дополнительные материалы таблицу Менделеева, таблицы растворимости солей, кислот и оснований, а также электрохимический ряд напряжений металлов

Номер задания	Что проверяет
Задание1	Строение атома. Строение электронных оболочек атомов первых 20 элементов Периодической системы Д.И. Менделеева
Задание2.	Периодический закон и Периодическая система химических элементов Д.И. Менделеева. Физический смысл атомного (порядкового) номера химического элемента, номера группы и периода Периодической системы Закономерности изменения свойств элементов и образуемых ими веществ в зависимости от положения в ПСХЭ и строения атома
Задание 3	Закономерности изменения свойств элементов в связи с положением в Периодической системе Д.И. Менделеева
Задание 4	Валентность. Степень окисления химических элементов (П)
Задание 5	Строение вещества. Химическая связь: ковалентная (полярная и неполярная), ионная, металлическая
Задание 6	Строение атома. Строение электронных оболочек атомов первых 20 химических элементов Периодической системы Д.И. Менделеева. Закономерности изменения свойств элементов в связи с положением в Периодической системе Д.И. Менделеева

LANGE OF THE PARTY OF THE PARTY

THE REAL PROPERTY AND ADDRESS OF THE PROPERTY OF THE PROPERTY

Задание №1 «Химический элемент, простое вещество»

При выполнении задания №1 ОГЭ необходимо ориентироваться на данный алгоритм. Если в задании говорится о <u>химическом элементе (атоме)</u>, то в задании будет сказано о:

- 1) протонах, электронах, нейтронах;
- 2) энергетических уровнях;
- изотопах;
- степени окисления (валентности);
- 5) о том, что он (химический элемент) входит в состав удобрений, лекарственных препаратов, живых организмов, живых клеток, земной коры, в состав сложных веществ (белков, жиров, углеводах, нуклеиновых кислот, витаминов, серной кислоты, соляной кислоты, щелочи и т.п.). Если в задании говорится о простом веществе, то в задании будет сказано о:
- о том, чем он является (металл или неметалл);
- его физических свойствах (агрегатное состояние (газ, жидкость, твердое вещество), цвет, вкус, запах, температура, электропроводность и т.п.);
- его химических свойствах (нагревание, окисление, растворение, горение, взаимодействие (реагирование) с веществами);
- его получении, его активности;
- 5) о том, что он входит в состав атмосферы, планеты Земля и т.п.

Задание 1.

- 1. Выберите два высказывания, в которых говорится о натрии, как о химическом элементе.
- 1) Натрий в соединениях проявляет степень окисления +1;
- 2) Натрий используется в промышленности для получения менее активных металлов;
- 3) Натрий необходимо хранить под слоем керосина, чтобы избежать его окисления;
- 4) При электролизе расплава поваренной соли на катоде выделяется натрий;
- 5) Натрий находится во втором периоде периодической системы химических элементов

Выберите два высказывания, в которых говорится о сере как о простом веществе.

- 1) Серная кислота содержит 32,65 % серы.
- 2) Сульфиды это соединения серы с металлами.
- 3) Сера не растворяется в воде.
- 4) Аминокислоты содержат серу.
- 5) Сера обладает бактерицидными свойствами. Запишите номера выбранных ответов.

- 1 Выберите два высказывания, в которых говорится о ванадии как о простом веществе:
 - Один из растительных «собирателей» ванадия хорошо знаком каждому это ядовитый гриб бледная поганка.
 - 2) В земной коре содержится 0,015 % ванадия.
 - Ванадий почти в полтора раза легче железа, плавится при температуре 1900 °C.
 - 4) В крови некоторых обитателей морей и океанов морских ежей и голотурий содержание ванадия достигает 10 %.
 - Добавки ванадия в золото придают последнему несвойственную ему твёрдость.

Ответ:		
--------	--	--

Тема №2: «Строение атомов первых 20 химических элементов ПСХЭ Д. И. Менделеева».

Обязательный минимум знаний.

Строение атома: ядро (протоны и нейтроны) + электроны.

Число протонов (p^+) — равно порядковому номеру химического элемента (Z).

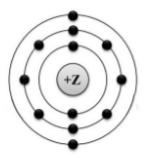
Число нейтронов (n^0) – равно A-Z, где A – массовое число.

Число электронов (e⁻) - равно порядковому номеру химического элемента (Z).

Заряд ядра = число протонов = число электронов ($+Z = p^+ = e^-$).

Номер периода показывает – число электронных слоев в электронной оболочке атома.

Номер группы показывает – число электронов на внешнем электронном слое атома + число валентных электронов.

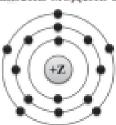

Валентные электроны – электроны, участвующие в образовании химической связи.

Распределение электронов по энергетическим уровням: на 1-м максимум 2 электрона, на 2-м - 8 электронов,

на 3-м – 18 электронов (если уровень последний – то число электронов на нём равно номеру группы или высчитывается как разница общего числа электронов и электронов на предыдущих уровнях).

Если последний (внешний) уровень атома имеет максимальное число электронов, то такой электронный слой называется завершенным (его имеют атомы благородных газов — элементы 8 группы).

На приведённом рисунке изображена модель атома химического элемента.


Запишите в таблицу величину заряда ядра (X) атома химического элемента, модель которого изображена на рисунке, и номер группы (Y), в которой этот элемент расположен в Периодической системе. (Для записи ответа используйте арабские цифры.)

Ответ:

X	Y

2

На приведённом рисунке изображена модель атома химического элемента.

Запишите в таблицу величину заряда ядра (X) атома химического элемента, модель которого изображена на рисунке, и номер группы (Y), в которой этот элемент расположен в Периодической системе. (Для записи ответа используйте арабские цифры.)

Ответ:

X	Y

Тема №3: «Периодический закон и ПСХЭ Д. И. Менделеева».

Обязательный минимум знаний.

Закономерности изменения свойств элементов и их соединений.

В периоде слева направо:

- 1. Радиус атома уменьшается;
- 2. Металлические свойства ослабевают;
- 3. Неметаллические свойства возрастают;
- 4. Восстановительные свойства ослабевают;
- 5. Окислительные свойства возрастают;
- 6. Электроотрицательность возрастает;
- 7. Число валентных электронов возрастает;
- 8. Основные оксиды через амфотерные сменяются кислотными.

В группе сверху вниз:

- 1. Радиус атома возрастает;
- 2. Металлические свойства возрастают;
- 3. Неметаллические свойства ослабевают;
- 4. Восстановительные свойства возрастают;
- 5. Окислительные свойства ослабевают;
- 6. Электроотрицательность уменьшается;
- 7. Число валентных электронов постоянно и равно номеру группы.

	_			
3	Расположите хим:	ические элементы	I	
	-	1) мышьяк	2) бром	3) кальций
	в порядке увеличе	ения их электроот	рицательнос	ти.
	Запишите номера	элементов в соот	ветствующе	м порядке.
	Ответ:		Pa	сположите

Расположите химические элементы –

1) фосфор 2) кремний 3) хлор

в порядке увеличения восстановительных свойств образуемых ими простых веществ.

Запишите указанные номера элементов в соответствующем порядке

Расположите химические элементы —
1) магний 2) кремний 3) алюминий
в порядке увеличения их атомного радиуса.
Запишите указанные номера элементов в соответствующем порядке.

Для выполнения заданий 1–3 используйте следующий ряд химических элементов

- 1) Si 2) S 3) P 4) Br 5) F
- 1.Определите, атомы каких из указанных в ряду элементов в основном состоянии имеют одинаковое число р-электронов на внешнем уровне
- 2. Из указанных в ряду химических элементов выберите три элемента, которые в Периодической
- системе химических элементов Д.И. Менделеева находятся в одном периоде. Расположите выбранные элементы в порядке возрастания их электроотрицательности.
- 3. Из числа указанных в ряду элементов выберите два элемента, которые проявляют одинаковую низшую степень окисления

Для выполнения заданий 1–3 используйте следующий ряд химических элементов.

- 1) Ca 2) Si 3) P 4) Be 5) S
- 1. Определите, атомы каких из указанных в ряду элементов в основном состоянии имеют одинаковое число валентных электронов
- 2. Из указанных в ряду химических элементов выберите три элемента, которые в Периодической системе химических элементов Д.И. Менделеева находятся в одном периоде. Расположите выбранные элементы в порядке уменьшения их атомного радиуса.
- 3. Из числа указанных в ряду элементов выберите два элемента, которые проявляют постоянную степень окисления в соединениях.

Для выполнения заданий 1—3 используйте следующий ряд химических элементов. Ответом в заданиях 1—3 является последовательность цифр, под которыми указаны химические элементы в данном ряду.

1) Na

2) K

Si

4) Mg

5) C

2.Из указанных в ряду химических элементов выберите три элемента, которые в Периодической системе химических элементов Д.И. Менделеева находятся в одном периоде.

Расположите выбранные элементы в порядке возрастания их металлических свойств

Тема №4: «Степень окисления химических элементов».

Обязательный минимум знаний.

Правила расчета степени окисления:

- 1. С.о. водорода = +1 в соединениях с неметаллами u = -1 в соединениях с металлами (гидриды металлов);
- 2. С.о. кислорода = -2, кроме пероксидов (-1) и фторидов (+2);
- 3. С.о. металла = заряду его иона (в таблице растворимости);
- 4. С.о. простого вещества = 0;
- 5. Сумма с.о. всех элементов в сложном веществе = 0;
- 6. С.о. иона = заряду иона (в таблице растворимости).

Алгоритм определения степени окисления элементов в бинарных соединениях:

- 1. Выбрать более электроотрицательный элемент и найти его степень окисления, как № группы 8. Написать над ним степень окисления.
- 2. Умножить степень окисления на индекс у этого элемента. Полученное число со знаком «минус» подписать под другим элементом.
- 3. Такое же число со знаком «плюс» подписать под другим элементом.
- 4. Разделить это число на индекс другого элемента. Полученную степень окисления написать над элементом.

Алгоритм определения степени окисления неметалла в кислотах и солях:

- 1. Отделить кислород вертикальной чертой, записать сверху его степень окисления 2 и умножить на индекс. Полученное число написать под кислородом.
- 2. Такое же число с противоположным знаком записать под левой частью формулы.
- 3. Вычесть из него число атомов водорода (для кислот) или заряд металла*индекс металла (для солей). Полученное число написать над знаком центрального элемента.

1 Тип 4 № <u>10738</u> 📸 🌑

Установите соответствие между формулой соединения и степенью окисления серы в этом соединении: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ФОРМУЛА СОЕДИНЕНИЯ

СТЕПЕНЬ ОКИСЛЕНИЯ СЕРЫ

A) $(NH_4)_2S$

1)-6

Б) Fe₂(SO₄)₃

2)-2

B) SF₆

3)+0

4) + 4

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

4 Установите соответствие между формулой соединения и степенью окисления фосфора в этом соединении: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ФОРМУЛА СОЕДИНЕНИЯ

СТЕПЕНЬ ОКИСЛЕНИЯ ФОСФОРА

A) PCl₅

1) +3

Б) Р₄

2) +5

B) K₂HPO₃

3) 0

4) -3

Запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ:

Α	Б	В

Тип 4 № 10760 🕍 🥚

Установите соответствие между формулой соединения и степенью окисления кислорода в этом соединении: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

ФОРМУЛА СОЕДИНЕНИЯ

СТЕПЕНЬ ОКИСЛЕНИЯ КИСЛОРОДА

$$A) O_2$$

$$4) + 2$$

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

Тема №3: «Химическая связь».

Обязательный минимум знаний.

Типы химических связей:

- 1. Ковалентная полярная химическая связь (образуется между атомами неметаллов с разным значением электроотрицательности или между атомами металла и неметалла с небольшой разностью в значении электроотрицательности). Например: H_2S , NH_3 .
- 2. Ковалентная неполярная химическая связь (образуется между атомами неметаллов с одинаковым значением электроотрицательности). Например: H_2 , O_2 , P_4 , S_8 .
- 3. Ионная химическая связь (образуется между атомами неметалла и металла). Например: NaCl, CaO, K_2S .
- 4. Металлическая химическая связь характерна для металлов и сплавов. Например: Al, Cu, бронза, чугун, латунь.

5	Из предложенного перечня выбе	ерите два вещества с ионной связью.
	 Li₂O CaF₂ Ag H₂S HCl 	
	Запишите номера выбранных от Ответ:	Из предложенного перечня выберите два вещества с ионной связью.
		 BaCl₂ NH₃ Ca NO₂ CaO Запишите номера выбранных ответов.
		Ответ:

AND THE PERSON OF THE PERSON O

Из предложенного перечня выберите два соединения, в которых присутствует ионная связь.

- 1) H2SO4
- 2) 2) NH4NO3
- 3) 3) Na2O
- 4) 4) Fe
- 5) 5) HClO3

[10] Выберите два соединения, в которых присутствует как ионная, так и ковалентная неполярная химическая связь.

- 1) H2O2
- 2) NH4C1
- 3) CuCl2
- 4) BaO2
- 5) Na2C2O4

Как	ие два утверждения верны для характеристики как кальция, так и серы?
1) 5	Электроны в этоме расположены на четырёх электронных слоях.
2) (Соответствующее простое вещество существует в твёрдом агрегатном состоянии
((H. V.).
3)	Химический элемент относится к неметаллам.
4) 5	Значение электроотрицательности меньше, чем у хлора.
5) 3	Химический элемент образует высшие оксиды с общей формулой Θ_2 .

THE RESERVE THE PERSON OF THE

The state of the s

6	Какие два утверждения верны для характеристики как натрия, алюминия?
	 Электроны в атоме расположены на трёх энергетических уровнях. Атом химического элемента имеет 3 валентных электрона.
	 Соответствующее простое вещество существует в виде двуха молекул. Радиус атома больше, чем у магния.
	5) Химический элемент не образует летучих водородных соединений
	Запишите номера выбранных утверждений. Ответ:

MANUAL CARROLL BOOM

План самостоятельной подготовки учащихся к ОГЭ

- 1. Познакомиться со структурой экзаменационных работ прошлых лет.
- Проанализировать материал, который в них входит, и наметить последовательность его изучения.
- 3. Выбрать учебные пособия, по которым необходимо заниматься.
- 4. Определить наиболее простые и наиболее сложные разделы курса.
- 5. Работать с курсом, обращая внимание на трудные разделы.
- Работая с текстом, обязательно задумываться над тем, что в нем говорится.
- 7. Составить самостоятельные вопросы к отдельным фрагментам текста.
- Сначала работать с заданиями, позволяющими последовательно изучить курс, затем переходить к тренировочным текста ОГЭ.
- 9. Проработать 10-15 вариантов текстов.